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Preface

The first step in completing a thesis is to choose either
a topic or an advisor. 1 chose Capt. Stanley R. Robinson as
an advisor. It was an easy decision, for his fame preceded
him., Together we chose to continue the research on antenna
arrays begun by Capt. Edward Raska Jr. and sponsored by Major
Jurgen O. Gobien of the Rome Air Development Center. This
previous work had led to some interesting discoveries; phase

steered antenna arrays distort an incoming broadband signal

such that the output is the signal plus its first time deriv-

ative. .The purpose of this cbntinuing study was to investi-
gate the effects of adding tapped delay lines to the array
and adapting the array to place a null on jamming sources.

I spent many long hours gaining some knowledge of adap-
tive antenna arrays. Also included was the usual pleasure of
writing a computer program to support the numerical analysis
to be done., I tﬁzzk Capt. Robinson for bringing me back on
track the many times I became infatuated by computer plots
which led nowhere. Eventually the interesting research ended
and the drudgery of writing began. Though this phase took
much too long, 1 am especially thankful that Capt. Robinson
continued with his encouragement and support.

I wish to also thank Maj. Carl and Lt. Col. Carpinella
for the time they devoted to reading my draft and discussing
this project and its goals. It is truly unfortunate that
Capt. Robinson has decided to leave this institution and
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(, move on to other endevors. I wish him well and extend my
— thanks once more,
Finally, I am thankful to my wife, Laura, for her love
and patience not only during this research effort but during

this entire academic program, and beyond.

William A, Riski
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L Abstract
Y T

This paper develops a complex baseband model for an adap-
tive array with N isotropic elements and T tapped delay
lines behind each element. Three aspects of arrays are repre-
sented: spatial and temporal propagation delays and the weight-
ing coefficients. The model is used to determine the steady
state effect of arrays on wideband signals. Optimum weights
‘are calculated based on the noise covariance matrix produced
by single and multiple narrowband jammers and single broad-
band jammers. It is shown that discrete spectral lines can L
be used to model a broadband jammer. For a jammer with 4% f;
bandwidth, this approximation yields a correlation function
which is accurate to within 0.53%. For a linear, equally
spaced adaptive array the output consists of the input sig-
nal and its first time derivative. This first derivative
distortion is reduced by the addition of tapped delay lines
only when the noise environment contains broadband jammers.
This performance improvement is quantified by increased null

‘depth. The improvement, for a 4% f:)bandwidth jammer, was

6.2 db with a jammer located at 10°\?nd 2.5 db for a jammer

at 50°.
. - Lo
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‘
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EFFECTS OF ADAPTIVE ANTENNA
ARRAYS ON BROADBAND SIGNALS

I Introduction

Adaptive antenna arrays have received considerable atten-
tion in recent years, One application of some interest is
their use in communications systems where reducing the effects
of undesired sources of interference yields improved system
performance (Ref 17,6). In an adaptive array, phase and am-
plitude of the signal at each receiving antenna element is
weighted and the resulting signals summed to produce the array
output. The values of the element weights are determined by
an algorithm which can act to steer the main antenna beam,
scan the beam across a target, stear nulls in the direction of
interfering signals, or meet several other system requirements
(Ref 14:212-213). Not all these requirements can be met con-
currently, but algorithms exist to steer the main beam in the
direction of a desired signal while steering nulls in the di-
rection of interfering signals. However, satisfactory perform-
ance requires that the interfering signals be much stronger
than the desired signal. If the interference is weak or ab-
sent, the desired signal itself may have a null steered in its
direction, In this situation, we can greatly improve the adap-

tive arrays performance by being able to distinguish between a
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desired signal and the interference. The new algorithm can
then be constrained to avoid nulling the desired signal while
still nulling the interferences.

An information transmission technique whose signal struc-
ture can be distinguished from undesired signals is spread
spectrum modulation. This technique employs a pseudo-noise
binary phase shift keying (PN-BPSK) modulation scheme which
results in a transmitted signal whose spectrum is orders of
magnitude wider than the information spectrum of the unmodu-
lated signal. The pseudo-noise (PN) coded sequence has a
time-autocorrelation struéture with a distinctive peak, It
is this correlation structure in the transmitted signal which
is exploited to differentiate between the desired signal and
undesired signals. Current technology permits the use of PN-
BPSK spread spectrum signals in conjunction with adaptive an-
tenna arrays (Ref 1).

An antenna array acts as both a spatial and temporal
filter. For an incident signal at a fixed arrival angle, the
array can distort the signals it receives, especially if they
are broadband signals. It is important to characterize this
distortion effect, since digital receivers using correlator
detectors can be quite sensitive to phase and amplitude dis-
tortion. Distortion can be divided into two categories:
static and dynamic, Static effects are inherent in the fre-
quency-sensitive nature of the antenna array. Dynamic effects
are due to the adaptive nature of the array and the resultant

time varying response it produces, 1In this paper we shall




limit ourselves to the static distortion effects.

Recent analysis has begun in this area (Ref 11). How-
ever, this work addresses antenna arrays without adapted
weights or tapped delay ljines. In this paper we will cal-
culate weights adapted to a noisy environment and use the
static value of these weights in the array model. The steady-
state response of the adapted antenna array will then be an-
alyzed. In addition, tapped delay line filters will be placed
behind each antenna element and the response of the array an-
alyzed. The addition of tapped delay-lines allows the assoc-
iated weights to adapt to the bandwidth of a noise source.
This results in a broader antenna pattern null in the direc-
tion of that source.

In Chapter 1I the analysis is begun by introducing the
various models and assumptions that are the basis for the en-
suing work. The basic properties of an adaptive array are in-
tfoduced. From this, a general transfer function equation is
derived. The chapter ends with an analysis of conditions nec-
essary for distortionless transmission of a signal through the
array.

In Chapter III we begin with a discussion of optimum
adaptive weights and the noise signals which drive these
weights., The noise covariance matrix used in calculating the
optimum weights is discussed with respect to narrowband and
broadband jammers. A Karhunen-Loéve expansion is used to de-

rive a representation for the correlation function of a

3




' ( broadband jammer based on discrete spectral lines. The chap-
ter ends with a numerical analysis of the correlation model.

) In Chapter IV we look at the transfer function of a lin-
| ear, equally spaced array with phase steering. Several graph-
ical results are analyzed for arrays with and without tapped

delay-lines.
In Chapter V we extend the transfer function analysis to
;irrays adapted to narrowband and broadband jammers. The
‘ effects of tapped delay lines and jammer bandwidth on the
output signal's distortion are investigated.

Chapter VI contains conclusions and recommendations.




I1 System Models

This chapter introduces a complex baseband model for the
desired signal and adaptive array transfer function. The fre-
quency response of the array is further analyzed using a Tay-
lor series expansion. From this we develop performance cri-

teria associated with signal distortion caused by the array.

A. Signal and Array Equation

The desired signal is written
A (t) = V(t) cos[2nf t+s(t)] (1)

where V(t) and ¢(t) are amplitude and phase, respectively,
of an rf carrier at center'frequency £, This can also be
written as

; [-d2nz, t]
A () = Rels(t)e (2)

where the complex baseband representation of the signal is

s(t) = V(t)e[J°(t)] (3)
and Re{-} denotes the réal part of the enclosed quantity.
The center frequency term in (2) will be ignored from now on
and only the complex representation of the signal written.
The complex representation contains all the information of

the signal .2 (t) centered at f, since modulation of .4 (t)




would either be amplitude modulation or phase modulation. 1In
either case, the information is contained in V(t) or ¢(t)

respectively. Therefore, there is an implicit time depend-

ence of e['JZ“f°t]

when we use the complex baseband repre-
sentation s(t) (Ref 9:121),

Consider the geometry and system shown in Figure 1. The
configuration is for a one-dimensional array geometry. The
signal impinging on the antenna array elements is assumed to
have originated from a point source in the far field, or
Fraunhofer, region of the array. This region is defined to
begin it a distance of L2?/A from the array where L 1is the
largest array dimension and )\ is the wavelength of the wave
propagating from the point source (Ref 14:12), For these con-
ditions, the wavefront striking the array surface is a plane
wave (Ref 9:124). It is assumed here that the equiphase sur-
face of the plane wave is also an equiamplitude surface.
Therefore the signal at the array is a uniform plane wave,
This assumption is valid since any spatial variations in the
plane wave can be expected to be slowly varying in relation
to the delays it experiences in propagating between the array
elements at the rf frequencies of interest. The signal repre-
sentation in Eq.(3) is valid in the time-frame of the array
surface.

For the antenna array, our primary interest is in model-
ing the propagation and adaption effects under steady state

conditions. In addition, the array is assumed to be "ideal",




X POINT SOURCE

=0

;.x
- L .
WEIGHTING AND SUMMING NETWORK

v
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Figure 1. General System Model

The assumptions which define an '"ideal'" array are first, all
antenna elements are isotropic in nature. Second, mutual
coupling effects between elements are ignored since the array
has few elements, Third, practical issues of circuit ele-
ment nonlinearities, filtering and dispersive effects, etc.
are ignored. The analysis will consider an ideal adaptive
array as a filter and identify the fundamental distortion
effects it produces. Once identified, the limitations above
can be removed and their impact compared to the baseline
developed here.

There are three effects to model in-the adaptive an-

tenna array: spatial, temporal, and adaptive. Spatial effects
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are represented as time delays experienced by the signal as
it propagates acros; antenna elements. These delays are de-
pendent upon the angle of arrival 6 of the signal. Tem-
poral effects are represented as time delays experienced by
the signal as it propagates down a tapped delay-line be-
hind an element and are not angle dependent. Adaptive

effects are modelled as a”complex term used as a multiplier

.on the signal at each antenna port. These complex terms are

referred to as adaptive weights, weighting coefficients, or
Just weights. An antenna port can be either an element or a
tap on a delay line. Therefore an array with four elements
and three taps per element has twelve ports. The weights
are dependent upon the desired signal's and jamming signal's
statistics, power, and geometries relative to the array.
Figure 2 refines Figure 1 by detailing the array configura-
tion. The notation of Figure 2 is listed below:

'i,g a Complex adaptive weight af the port defined by
the 1th element and gth tap on the delay
line behind that element.

A = Delay between taps in units of meters.

N a Total number of antenna elements.

T 4 Total number of taps per delay line.

y(t) 4 Array output,

B (f) & Matched filter transfer function, matched to
the desired signal.

r(Tt) A Array output after matched filter.
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Figure 2, Adaptive Array Model




The total propagation delay of a signal from an antenna
port to a reference point can be represented as a time delay

ith

ti g where 1 refers to the element and g refers to
?

the gth tap on a delay line. This delay can be factored
into a spatial delay dependent on signal arrival angle and a

fixed temporal delay

A
t 2 ty(0)+t, (4)

i,g

The assumptions used to identify the far field region of an

array also lead to an approximation for ti(e) . It is

sin(9)

tg(e) . i (5)

Cc

where Xy is the distance from the reference point to the

ith

element and c¢ 1is the velocity of light. As shown in
Figure 1, the direction of arrival of the signal 0 1is
measured with respect to the array normal. This convention
results in the array broadside corresponding to 6=0° .

Temporal delay tg corresponds to the propagation de-
lay experienced by a signal in travelling along a delay line
from an antenna element (glAl) to tap g (see Figure 2).
The delay is dependent on the distance between taps and not
signal arrival #ngle. The temporal delay is

8y
tg * X (6)

where yg is the distance from the reference point to the

10




gth tap. The reader should not infer from the use of Xy
and y8 that the array is two-dimensional.

The distances to a port are'represented in a rectangular
coordinate system. The reference point or origin is defined
as element one, tap one z(i.e. i=1,g=1) .

The complex adaptive weights contain an amplitude and
phase term. Both terms are independent of time since trans-
ient effects are not within the scope of this research effort.
The weight at the ith element and gth tap (i.e. port i,g)

is defined by

1>

'i,g Gi,g exp(Jai,g) (7)

where G and ay g are real numbered values determined

i,g
by the equations discussed in Chapter III,.

Since the signal at port i,g is delayed by amount

1::'_,8 , We can represent it as
A'i.z(” ~d(t-t; )
= Be{s(t-ti g)exp(-Jano(t-ti g))}
(8)

The complex baseband representation for the desired signal at

port i,g 1is

li.‘(t) = s(t-ti")exp(+32wfot ) (9)

i,8

Note that with complex baseband notation, a delay results in

11




an additional phase term. The adaptive antenna array output
is the summation of the signals at each port, as defined in
Eq.(9), multiplied by their associated weight, defined in

Eq.(7). The array output is

N T
t) = . t-t, +j2nf,t, 10
V) = p 3w gs(tety Qexp(riznit, o) (10)

It is apparent from Figure 2 that the or;gin of the co-
ordinate system is not the geometric center, or phase center,
of the array model (Ref 15:72). The phase center of an array
is defined as the point at which the sum of the time delays
to each port is zero. To isolate the effects of this choice
of origin within the array representation, a phase center
term tc must be factored out. Propagation delay tc is a
constant, for a given angle 6 , which is a measure of the
difference between the array's phase center and the arbitrarily
chosen coordinate system origin. The phase center is derived

from

N T
T T (t;+t -t ) =0 (11)
i=1 g=1 i'g e
N T N T
z z (t1+tg) = I £ t, = NTt (12)

i=1 g=1 i=1 g=1 © ¢

Solving for the phase center term yields

12 7
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N T

=== I L (t,+t )
c NT i=1 g=1 i'g

t

(13)
T
T j=1 g=1 18

Factoring tc out of the array output yields

N T

y(t) = eXP(J2vfotc)i£1 gElwi’gs(t-ti’gnc)

exp(J2wfo(ti,g-t )) (14)

c

This factorization allows us to separate the effects of
our choice of coordinate system origin from the effects in-
herent in the generic array model itself., The first ex-
ponential corresponds to a constant phase shift., It is a
function, through tc , of the relationship between the
s;gnal location, phase center location, and the location of
the origin of the coordinate system. 1In addition, tc re-
sults in a constant time delay of the signal. Writting

Eq.(14) in the frequency domain yields

2 N T
Y(£) = e[J "$f+f°)tc]£ T w, S(f)
i=1 g=1 M€

Je2n(f+f4) (t -t )
e[ 71,87 ¢ ] (15)

where Y(f) and S(f) are the Fourier transforms of y(t)

( and s(t) respectively. The system transfer function,

13




H(f,8) , is defined as the ratio of output to input forcing
functions. From Eq.(15) the transfer function of an adaptive
antenna array is

T (327 (£+fo)(t. -t )
Iwy e Pt igTve (16)

H(E,0) = o(I2T(E+E0)EL) g
The dependence of this function on frequenc& is shown ex-
plicitly. Its dependence on signal arrival angle 6 is im-
plicit in ti,g as was shown in Eq.(5). The reader is re-
minded at this point that we still are working with complex
baseband notation. Therefore frequency f 1is still defined
as a frequency offset from £, . The transfer function is
dependent on several other parameters which are defined by a
particular system (signal and array) configuration. These
parameters are the weighting coefficients (Gi,g and ai,g)
agd array geometry (xi,yg,N, and T) . (See Egs.(7), (4),
(5), and (6)). Although H(f,8) is dependent on these
parameters, they are all fixed, for a given system, in the
steady state analysis of subsequent chapters.

One of the main objectives of this thesis is to investi-
gate the distortion experienced by wideband signals as they
pass through an adaptive array. It is the analysis of Eq(16)
which will reveal any distortion. H(f,60) must meet two con-
ditions for distortionless transmission of signals. First,

its amplitude response (IH(f,e)I) must be constant over the

frequency spectrum of the desired signal. Second, its phase

14




response (arg (ﬁ(f,e)) must be linear over the same fre-
quency spectrum. These conditions will result in all spec-
tral components of the input signal having the same attenua-
tion and phase shift at the array output. In the time domain,
the output signal will be.a scaled, delayed replica of the

input signal.

B. Frequency Response

To explore the frequency dependence of H(f,6) further,
the function is expanded into a Taylor series about f=0 |,
(Since the expression is in complex baseband representation,
this corresponds to expanding physical quantities about the
center frequency f, .) It is assumed here that the adap-
tive weights are independent of frequency f . This corre-
sponds to steering the array at center frequency £f, . The

series is

j2n(f+fo)t ] N [j2nfo(t, -t.)
H(L,0) = e[ 0 )t] . *tie °];1+

T
A -
. Elwl,g

i=l ¢

(Jz."f(ti’g_tc)) + (jan(ti,g-tc) )2

E_ + oL
2!
2nf(t, -t )P
(32n£( 1,8 ¢ + ... s (17)
n!
15
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2
A e[j n(f+fo)tcl

- A(B)+(j2nf)B(0)+(j2nE)3C(0)+...} (18)
where
N T [J2nfo(t, -t )
a) 2 1 g ow e 1,700 (19)
i=1 g=1 '€
and
N T [32nf0(t, -t )]
) - i,g ‘¢
B(9) iil gilwi»g(ti,s tc)e (20)
and
N T [j2nfe(t, -t )
ceyd ¢ : W, <ti 't%je o(ty, g7t (21)
i=1 g=1 /& 2

If we define 8 as the bandwidth of the desired signal
s(t) , then conditions for distortionless transmission by
filter H(f,0) can be stated more specifically (Ref 13:351-

355), First, a constant amplitude response is achieved if
[£(t; -t )]<<1 for f in B8 and all i,g (22)
& C

This is apparent from Eq.(16). Secondly, another condition
becomes apparent once we have performed the series expansion

in Eq.(18)

16
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2nfB(9)

<<1 for all f in 8 (23)

A(B)

The condition of Eq.(22) would be sufficient for a constant
amplitude response if H(f,0) could be completely represent-
ed by the first term in the Taylor series; i.e., H(f,8) =
A(8) . This is true for input signals which are monochroma-
tic; i.e. f=0 . Nearly all antenna work makes this assump-
tion or assumes the signal is narrowband enough to be validly
modelled as monochromatic. The common nomenclature for this
first term (A(g)) 1is the array factor. It is used to de-
termine many properties of arrays including the radiation
pattern of the array, the main lobe location and beamwidth,
null location, and sidelobe characteristics (Ref 14:chapter 1),
The frequency response of an array in the vicinity of a null
is often analyzed and the results then referred to as the
radiation pattern. Though this is not absolutely correct, a
strong duality exists between the frequency response and an-
tenna pattern in the vicinity of a nuil. Appendix A contains
a perturbation analysis which explains this relationship.

The second condition (Eq(23)) implies that meeting the
first condition alone does not result in distortionless trans-
mission. In the vicinity of an antenna pattern null, the
first term approaches zero while the second term may not. 1In

this case the transfer function is dominated by the second

17

YR IR T T e
s i e I i g

»



term which has linear variation with frequency across the
band of interest. A performance measure of this situation is
developed in a later section and is used to analyze several
system configurations in §ubsequent chapters. This second
condition of distortionless transmission can be extended

to a third condition by requiring that

(2n£)%C(9)
A(9)

<<1 for all f in B (24)

If A(8) and B(6) both approached zero then H(£f,6) would
be determined by this third term in the series. It will be
shown in later chapters that the magnitude of C(8) is neg-
ligible, as compared to A(6) or B(8) .

The effect of the higher order terms in the transfer
function upon the desired signal can be interpreted in the
time domain by recalling the differentiation theorem of

Féurier transforms. Using Eq.(18) and (15) yields

Y(£) = S(£)H(L)

[d2n(fo+f)t ]
= S(£)[A(8)+(J2nE)B(8)+(J2mL)2C(0)+...]e ¢

(25)
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In the time domain this is

ds(t-t )
y(t) = 3A(9)s(t-tc)+B(B)——-—_2_ +
dt
d*s(t-t ) d®s(t-t ) N T
C(O)——= + ...+ —c 1 >S5
2
at dt ol j=1 g=1

ne[Jzufo(ti’g-tc)]‘eJanotc

" g(ti gte) (26)

i,g e

Recall that with complex baseband notation a monochromatic
signal is written as a complex constant. Thus it has no de-
rivatives and the output of the array is just the first term
of the series in Eq.(26)(including the constant phase offset
due to the phase center exponential term). However for
broadband signals Eq(26) shows that the array output is the
sum of the signal and all of its time derivatives. This
characterization of the actual waveform distortion experienced
by a broadband signal as it is processed by an antenna array
was first derived and studied by Raska for arrays without
adaptive weights and without tapped delay lines (Ref 11).
Similar analysis exists for multipath effects on a communi-
cation channel (Ref 13:351-355).

As Eq(26) reveals, the distortion in the array output

consists of all nth

order derivatives of the input signal.
The following section describes a particular signal of inter-

est and its first time derivative,
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C. 8Signal of Interest

Several types of modulation can be used to spread an in-
formation signal to produce a spread spectrum signal. We will
only consider direct sequence modulation (Ref 5:3). This is
defined as modulation of a carrier by a digital code sequence
whose bit rate is much higher than the information signal
bandwidth. To recover the information signal at a receiver,
the spread spectrum signal is modulated again with the same
digital code sequence. This compresses the information back
down to its original bandwidth. The type of code sequence
used for modulation, and which must be known at the receiver,
is called a pseudo-noise (PN) code.

A pseudo-noise signal can be thought of as a train of
t1 pulses that switch states randomly at a high rate (such
as 5M Hz). The pulse train, p(t) , becomes periodic after
some fixed number of pulses has passed. An n-bit shift
register, with proper feedback connections, can produce a
PN code of length 2"_1 bits. The entire periodic sequence
is called a code word, with each bit of the code referred to
as a chip (Figure 3). PN codes have two properties of par-
ticular interest which led to the implemenfation of correla-
tion receivers for demodulation of spread spectrum signals
(Ref 5:55). First, the distribution of bits within a PN code
word is random. Second, the code word has an autocorrelation
with a peak only at the zero shift point. 1Its value is nearly
zero if the time shift is a full chip width or greater. These
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Figure 3. Pseudo-Noise Waveform

two properties are related since only a truly random code
would have an autocorrelation function which approaches a
delta function. Because the correlation function of a PN

code resembles a delta function, it looks like white noise

when used to drive a system whose bandwidth is small com-
ﬁared with the inverse chip period (thus the name '"pseudo-
noise" code). The correlation peak provides an excellent
signal discriminant to be used in receiver design; and adap-
tive weight algorithms. Correlation receivers perform a
correlation of the received signal with the PN code and use
the resultant correlation peak for synchronization. If an

adaptive array distorts the received spread spectrum signal
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enough, the pseudo-noise code characteristics of the signal
can be lost and the correlation receiver will produce a dis-~
torted correlation waveform. If distortion is enough to pre-
vent synchronization between the signals PN code and the re-
ceivers PN code, the receiver will be unable to recompress
the received signal down to its original bandwidth and the in-
formation will be lost. Therefore, instead of looking at the
spread spectrum signal directly, we will investigate the
effects of the adaptive array on the correlation function of
the PN code.

The autocorrelation function of a PN sequence is a tri-
angular waveform of height CTc and width Tc , Where Tc
is still the chip period and C is the code length (C=2n-1)
(Ref 5:64-67). This waveform can be normalized by 1/C to re-~
move the code length dependence (Figure 4), 1In Figure 2 we
have the array output passing through a filter matched to the
input s(t) . Filtering the signal by this matched filter is
equivalent to the correlation operation performed in a re-

ceiver. The Fourier transform of a matched filter is

Hy(£) = 8" (1) (27)

where S*(f) is the conjugate of the Fourier transform of

signal s(t) . Using Eq.(25) the output is written




7rs(r) T 2:2&11
dt
Te 1
T
Rl —
-Te Te T -Tc
a. Signal b. Time Derivative of
Signal
T, = 2X107° seconds

(
Figure 4. Autocorrelation Waveform
R(L) = Y(f)Hu(f)
*

= Y(£)S (£)

= S(£)H(L,0)8 (£)

= |S(£)|*H(£,0) (28)
where |S(£)|? is the transform of the autocorrelation func-
tion of the des;red signal, and R(f) 1is the transform of
the output correlation function. Substituting Eq(18) for
H(Z,0) and taking the inverse transform into the time do-
main yields
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drs(t-t )
r(t) = gA(G)r (t-t )+B(8) C +
s dt
d%r (1-t) (j2nf,t )
c(o)—= LA ...%e *Te (29)

dr?

where rs(t) is the autocorrelation function of the desired
signal, s(t) . The distorted matched filter output is seen
to be a complex weighted sum of the desired signal's auto-
correlation function and its derivatives. The results of
Eq.(26) and Eq.(29) are equivalent with respect to signal
distortion. 1In Eq.(26), the desired signal is very general
in nature. Equation (29) assumes that we have added a match-
ed filter to the array and therefore the desired signal is

an autocorrelation function., The definition of H(f,8) is
unchanged in either case since it is of course independent of
the signal waveform. To quantify the distortion due to
H(f£,6) , the signal of Figure 4 will be used to illustrate a

performance criteria.

D, Performance

The condition of Eq.(23) can be used to give a measure
of the angular displacement around the array where the output
of the array is dominated by the first derivative of the desir-
ed signal. This condition is dependent on the particular sig-

aal of interest, since it is evaluated only for frequencies

withis the bandwidth of the signal, B8 . From Eq.(29), we
24
e S T T Bt




—_— e s e ede - g WTT S T W

can see that an equivalent time domain condition is that

drs(r-tc)B(e)
rs(T-tc)A(e)

<<1 (30)

Rearranging and defining a threshold n we get

drs(r-tc)
IA ) > " dar (31)
B(6

rs(t—tc)

where n 1is a time-bandwidth product. For the correlation
function of spread spectrum signals, shown in Figure 4, we

see that near 7t1=0 the ratio of the signal derivative to the

signal is
drs(r-tc)
dz = = (32)
rs(t-tc) c

From the Fourier transform of rs(r) , the first zero cross-
ing occurs at frequency 1/'1‘c . Since rs(r) is not band-
limited, we cannot uniquely specify its bandwidth. The ques-
tion now becomes what filter bandwidth is sufficient to pass
the signal undistorted. Dixon has shown that power spectrum
of the form (Eiﬁ—i) : contain 90 percent of their total power
within the main lobe, However, if the filter bandwidth is re-
stricted to the signals main lobe, the sharply peaked triangu-

lar shape of the signal is rounded off (Ref 5:20-21). The
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designer of an antenna array-correlation receiver system must
decide on the correlation pulse distortion which is acceptable.
This will determine the array filter bandwidth. A wider filter
bandwidth results in an output signal of higher fidelity., The
necessary bandwidth can be defined in terms of the number of
sidelobes included from the (sin x/x)? power spectrum. The

signal bandwidth is

B = ,'1‘.— (33)

With this signal bandwidth the filter bandwidth must be at

least n/Tc . Looking at Eq.(31), we now have

3%—=B (34)

The ratio on the left is interpreted as the array filter
bandwidth as a function of signal arrival angle. Eq.(34)
states that the filter bandwidth must be at least as large as
the signal bandwidth,

Using the specific values in Figure 4 for Tc , and
assuming that the bandwidth of the correlation pulse is de-
fined as including the main lobe and four sidelobes of its

power spectrum, we have

|A R > - = 20— - 5x10%82 (35)
c 2x10
26
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Taking logarithms yields

log 5483 > 6.7 (36)

This threshold will be uséd as a benchmark in the analysis
of Chapter 1IV.
Eq.(24) identified another condition for distortionless

transmission of a signal through the array. It is that

dzrs(r-tc)
'C'(—;'A(g > g (37)
rs(r-tc)

It is apparent from Figure 4 that for the PN-BPSK signal of
interest the right side of this equation evaluates to 10°% .
Later chapters will show that this condition is always met
for the scenarios analyzed.

For the second time derivative term to be imsignificant

a condition to be met is

dzrs(r-tc)
'Bg > ——dtz____ (38)
drs(r—tc)
dr

For the signal of interest the right side of this equation

evaluates to 0.5 ., Research has been done into the auto-
correlation functions and their time derivatives, for other
modulation techniques (Ref 3). The performance expressions
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in Eqgs.(34), (37), and (38) were evaluated for these mod-
ulation types. The values obtained are on the same order

of magnitude as those shown here for PN-BPSK signals. There-
fore results based on these values are valid for several
common modulation techniques. In Chapter III we derive the
expressions used to determine the adaptive weight valueé.
They are based on the array geometry and the power, band-

width, location and stochastic nature of the desired signal

and noise sources,
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IIT Adaptive Weights

This chapter begins with an introduction to adaptive
arrays. The widely accepted equation for optimum weights
is presented, It is based on the use of a noise covariance
matrix. The noise environment represented in this research
is analyzed by using a Karhunen-Lo®ve expansion. This leads
to a representation for broadband jamming sources which is

used in subsequent chapters to calculate the optimum weights,

A. Optimum Weights

The most widely used objective in calculating the weights
is to minimize array output noise power, where the noise con-
sists of both thermal noise and jammer noise. This is done
by using weights which result in the array's receiving an-
tenna pattern having nulls in the direction of jamming sources.

In order to maximize signal and minimize noise out of the
array, some a priori knowledge is necessary with which to dis-
tinguish the signal from the noise. This discriminant can in-
clude information either about the signal or noise, or can rely
on their differences. Some useful discriminants are the signal
waveform, spectral differences between signal and noise, direc-
tions of arrival, polarizations, and power levels (Ref 8:13).
One or several of these can be used such that only the inter-
ference is cancelled., Direction of arrival of the desired
signal is used in this paper.
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It has been shown that the set of optimum weights is

given by
= -1
=1 Wq (39)

where the covariance matrix ¢ is a matrix of cross-covar-
iances and autocovariances of the input noise signals at each
antenna port (Refs 17,6,12), Subsequent sections of this
chapter develop a representation for the noise signals which
is used to explicitly define the covariance matrix. .he col-

umn vector of optimum weights ¥ is defined as

W=1: (40)

The quiescent weights Wq are chosen to steer the main an-
tenna array beam in the direction of arrival of the desired
signal, independent of the jammer environment (e.g. in a
"quiescent" environment). This direction of arrival is as-
sumed known a priori. The quiescent weights are determined
explicitly in the next chapter (see Eq(75) and (78)).

One of the differences between various adaption algorithms
is the information which is known a priori. It is to be ex-

pected that as the estimates for the unknown information
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improves, the weights calculated from algorithms converge to
the optimum weights defined in Eq(39) (Ref 12:19). Since the
scope of this paper is limited to analyzing the steady state
response of the antenna array transfer function, the optimum
weights are simulated assuming known signal parameters, There-
fore the results of this paper are independent of the adaption
algorithm used.

The emphasis in the rest of this chapter is on develop-
ing explicit expressions for ¥ . 1If the noise environment
only contains monochromatic jammers, then 3 can be calculated
given the thermal noise power and the power, frequency, and
direction of arrival of all jammers. This simplifies the
numerical evaluation of the optimum weights. The next sec-
tion evaluates the covariance matrix for the general case of
a jammer with bandwidth. It is then shown that for large
time-bandwidth products, monochromatic jammers can be used

to adequately approximate a broadband jammer.

B. Noise Environment

The noise signals include both directional noise sources,
which propagate as uniform plane waves, and thermal noise at
the front end of the array, which is assumed independent from
one antenna element to the next., Each of the M spatially
discrete jamming sources is assumed uncorrelated with all
other jammers. The jamming signals are defined at rf fre-

quency as
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f:(t) = Sm(t)cos[2wfot£m(t)-zm]

m=1,2,...,M (41)

The modulation &m(t) and pm(t) are sample functions from
n, ")

independent random processes. The independent random variables

O which are uniformly distributed on [0,2n] , are added

~

to ensure stationarity [Ref 10:303]. The random processes are
th

also assumed ergodic. In complex baseband notation the m

Jammer is
J (t = t)ex ‘D (t +0 I 42
g i} ) Fm( ) p[J,‘m ) g ] ( )

The expected value of Jm(t) is zero. The zero-mean thermal
noise is modelled as ba;dlimited noise with one-sided power
spectral density of N, watts/m?’-sec. The bandwidth of this
noise is assumed large as compared to the bandwidth of the
array. Therefore the propagation delays between antenna el-
ements and between taps on a delay line are assumed larger
than the coherence time of the thermal noise. The autocorre-
lation function of the noise is then a delta function of
height N, and the crosé-correlation between any two ports
is zero.

The elements of the noise covariance matrix are a function
ot phase differences between ports, and therefore time delay

differences. The use of the double subscript (i,g) leads to
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cumbersome notation. Therefore for the rest of this chapter
the delay associated with the mth jammer at port i,g will

be denoted as t where k=1,2,...,K. The term K equals

mk
NxT , the total number of ports. The delay at a different
port will be denoted as tmk‘ . Since the noise covariance
matrix is a function of phase differences, the phase center
of the antenna array does not need to be considered as it
was in Eq.(14). Therefore the coordinate system by which the
delays tk are determined is irrelevant, as long as we are
consistent. 1In the computer simulation used to support the
following chapters, the coordinate system is the same as that
described in Chapter II.

Using this notation, the total noise siggal at port Kk
is

M

Ne(t) = D o (t-texp[32ntot ]+, () (43)
m=1

where R(t) is the complex baseband representation for the

thermal noise. Note that t is dependent on the array

mk
geometry and jammer location,

C. Noise Covariance Matfix

The noise covariance matrix & is composed of the ex-
pected value between the noise signal at port k and every
other port, for all k ., The noise signal of Eq.(43) is used
in evaluating the expectation., Since both im(t) and p(t)
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are random processes with zero mean, the matrix is actually
a correlation matrix. Using a superbar ' to denote

ensemble average, the covariance matrix is written

9

=% '
Np(t) Nyj(£) Nj(t) Np(t) Np(t) Ng(t) ***Nj(t) Ng(t)

* * .
Nz(t) Nl(t) Nz(t) Nz(t)

° : N (t) Nk(t) *
3 A - . .
- . . .

Nx(t) Nl(t) . . . . . . . . . . N;(t) Nx(t)

E
(44)

Each element of this matrix consists of the sum of autocorre-
lation functions for each jammer, and the autocorrelation func-
tion of the thermal noise, evaluated at a time differential
T . The time differentiﬁl is the difference between the
time delay tok to port k and the delay t k- to port k”*
i.e., the kk° entry of the matrix.

Consider the case of one jammer (M=1) ., Evaluating the

kk” entry due to only this emitter yields
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(32rfot,) * (3272t .)
At-t e q(t-t .)e

(32“f°(tk-tk’z

=e A=t ) g (t-t, )

(szfO(tk-tk‘)

= e RJ(tk’-tk) (45)

However

J2re(t, -t )

Ry(ty--t,) & [ s;(f)e af (46)

where RJ(') is the autocorrelation function of i(t) and

SJ(f) is the associated power spectral density. The Kkk~*

-
entry of ¢ with M Jammers and thermal noise is then

M

*
N (£) Ny - (t) = ZRJm(tmk,-tmk)
m=1

(§27fo(t =t _..)
e mk “mk N8y, - (47)

where Gkk‘ is a Kronecker Delta function.

D. Karhunen-Lo&ve Expansion

Equation (47) was implemented in a computer program
assuming the jammers were monochromatic signals. It was

later decided to investigate the effects of broadband
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Jammers on the results. The derivation to follow showed
that the narrowband jammer implementation could be used
since the correlation function of a broadband random pro-
cess can be approximated using discrete spectral lines.

Consider the following model expansion of the complex
random process ﬂ(t) along a complete orthonormal (CON) set
of basis functions {wm(t)} over a finite time interval

°T‘/2s T'/2 s

M
AE) = Ladam. D v (t) (48)
M o m=-M

for -T7/2<t<T’/2
T
z

where Ag = [ A (tat (49)
-T*

Zz
The notation "1l.i.m." denotes limit in the mean, implying
a mean-square convergence of the sum in Eq.(48) and m is

th temporal mode., Note that

the integer index of the m
{wm(t)}. is a set of complex functions yet to be specified,
In addition, since g(t)' is assumed to be a zero-mean, com-
plex random process, {gm} are zero-mean, complex random
variables,

By proper selection of basis functions {wm(t)} it is

possible to expand g(t) so that the coefficieuts of the
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expansion {gm} are pair-wise uncorrelated,

(tatn-) = () () = (50)

for m# m” .

A necessary and sufficient condition for the {gm} to
be uncorrelated is that the basis functions {wm(t)} are the
solutions to the Fredholm equation (Ref 16:180)

T‘
T

Y¥a(t) = [ Ryt t7)y (t7)dt” (51)
.__'21‘_‘_
for -T”/2<t<T*/2 .

The numbers {ym} are the real eigenvalﬁes associated
with the eigenfunctions {wm(t)} for all integers m(-o<m<=),
The series expansion of g(t) on a CON set of eigenfunctions
over an interval yielding uncorrelated random coefficients is
known as a Karhunen-Loeve (KL) expansion. If the basis func-
tions {wm(t)} of Eq.(48) are solutions to the Fredholm
Eq.(51) then the model expansion of J(t) is such an expan-
sion,

Results from linear'integral equation theory lead to
several properties of integral equations (such as the Fred-
holm equation above). One of these properties is known as
Mercer's Theorem (Ref 16:180-181). It states that any square
integrable kernel RJ(t,t‘) of Eq.(51) may be expanded in a
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series,.

®

Ry(E, %) = D yobn()un(t”) (52)
m=-

for -T7/2<t,t°<T”’/2

where the convergence is uniform for -T7°/2<t,t"<T’/2 ., 1t

can be shown that if the correlation function of a zero-mean,

complex random process g(t) can be expanded in a form of

Eq.(52) the model expansion given in Eq.(48) will converge in

the mean-square sense (Ref 7:409).

For‘stationary random processes characterized over long
time intervals |-T°/2,T°/2| , it can be shown that the
eigenvalues {ym} and associated eigenfunctions {wm(t)}
which are solutions to the Fredholm Eq.(51) can be approximated
by (Ref 16:205-207) .

Yo 1 () (53)
and
V() = exp[j2ngt] (54)

for -T7/2<t<T"/2 .

Here T° 1is again the characterization interval in sec-

onds and SJ(¥7) is the power spectrum of the complex random

process, defined in Eq.(46), sampled at frequencies %.Hertz.

The magnitude of T“ needed for the approximation to
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be valid depends on how quickly SJ(f) varies near frequency
%‘ . For smooth spectra, long T° means long compared to

the fluctuations of the jamming signals envelope

T >> - (55)
J
where BJ is the jamming signals bandwidth.
Therefore if T 1is several times greater than %—
J
then the basis functions {wm(t)} of the expansion over a

time interval of length T became the complex exponentials
of a Fourier series expansion. It can be shown that the co-
efficients of these complex exponentials became uncorrelated
as the interval T gets long (Ref 4:94). The eigenvalues

{Ym} become samples of the power spectrum SJZf) evaluated
at the harmonic frequencies of the Fourier series expansion.

Thus, for long characterization time T” , the Kar-

hunen-Lo&ve expansion for Q(t) becomes

N -1 LS
O = S e T (56)
m==—c
for -T’/2<t<T’/2
where -
1 2 -j2ngt
In =1 [ Aee dt (57)
=T~
2
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The expected value of the energy of 4(t) in time in-

terval [-T’/2, T°/2] 1is defined as

1-
i
g4 f J() () ae
~T"
-z
=T z Rl (59)
m=—c

where the modal expansion for g(t) has been used. Using
Mercer's theorem Eq.(52), the mean energy of the process for

long characterization time T~ is

- m

E= D S (60)
m=-o

Equating each term in Eq.(59) and (60) and using Eq.(50) pro-

duces

where 6mm’ is again the Kronecker delta. Therefore, for long
characterization intervals, the mean-square value of each ex-
pansion coefficient {Jm} is the power spectrum evaluated at
the coefficient's harmonic frequency.

Since the modal expansion coefficients have been chosen
80 a8 to be pairwise uncorrelated, the correlation function
of the complex random process g(t) can be written
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RJ(t,t') = git;{it ) *

- 2 %_, S j(T=)exp[j2rT=(t-t")] (62)
mE=o

for -T7/2<t<T"/2

Note the similarity between this expression and Eq.(47).
Equation (62) can be considered as an entry in the noise co-
variance matrix produced by an infinite number (depending on
SJ(’)) of narrowband jammers. To emphasize this we will start
with Eq.(47) and apply it to a group of narrowband jammers
chosen to represent a single broadband jammer.

Narrowband jammers which are not necessarily at center
frequency yield a noise signal at port k of

5 [eaen(te-t )t ]
M) = D fge Ry () (63)

m=1

where fm is an offset frequency from center freguency for

th

the m Jammer. This leads to the kk“ entry in the co-

variance matrix, from Eq.(47), as

M

[
N (O N -(8) = Y (|2
m=1

(Jzn(f°_fm)(tmk-tmk‘))

+No ¢ (64)

kk‘

We choose to model a single broadband jammer as a sum of
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narrowband jammers each at a different frequency but all at
the same spatial location (i.e. tmk=tk and tmk‘=tk‘ for all
m ). The broadband jammer is assumed to have a flat power

spectral density. Therefore each discrete spectral line has

equal power P, (i.e. PN=|Jm|2 for all m). From Eq.(64), the

kk* entry in the covariance matrix due to jammers alone, be-~

comes
{
M _
(32m(2o-£)7)
Re-(T) = D Pre (65)
m=1
The frequency offsets are defined to be
BJ :
fm, = 5 = (m-l)afp m=1’2v-'°:M (66)

where 23f is the spacing between discrete spectral lines (see
Figure 5).

To equate the results of the Karhunen-Lo&ve expansion in
Eq.(62) with Eq.(65) it is assumed that the power spectrum in

Figure 5 is for process {(t) , and that

g
1 = J
R = (67)

The correlation function of Eq.(62) can be written

M g
J
Ry(1) = 2 -1

m=1

(32nf_t)
e n (68)

Jﬂcy
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b. Broadband Power Spectral Density Mode!

Figure 5. Power Spectral Density of Broadband Jammer
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Exploiting the symmetry of the correlation function and in-
corporating the phase term associated with complex baseband
representation, yields

(32m(£0=£,)T)

M
P
R (1) = z Ud‘f’TY e (69)
m=1

This expression is nearly equivalent to Eq.(65). They differ
only in the weight placed on each spectral component (i.e.
PJ/(M-I) versus PN).

Note that the total power in g(t) from Figure 5a. is
PJ . In implementing Eq.(65) in the computer program used

later the power in each spectral line was chosen as

Py
PN = M—' (70)

so that the total power in g(t) is PJ

M
=1 %s

Note that as the number of spectral lines becomes large, this

From Eq.(69), the total power in g(t) is

expression approaches PJ . Therefore for large M Eq.(65)
is equivalent to Eq.(69).

Summarizing, it has been shown that a Karhunen-Lo&ve ex-
pansion of g(t) supports the approximation of the correlation
function for a broadband jammer by discrete spectral lines.

To quantify this approximation, a numerical analysis follows,

E. Numerical Analysis of Model

The correlation function approximation of Eq.(65) can be
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written in closed form. Using a geometric series identity

and Eq.(66), we get

(32mfo1) . x
Rkk‘(T) - Pye sTn(MZNBfTE) (71)
sin(2n3f 2)
Normalizing this expression by total power yields
T
Rkk‘(T) 1 e(j2nfnt) sin(MZnafﬁ) (72)
M . T
Rkk,(‘r)lT=0 s1n(2naf2)

The complex baseband correlation function is defined in
Eq.(45) for a single broadband jammer at center frequency.
Using the power spectral density in Figure 5a., Eq.(46) eval-
uates to

sin(anJ)

R(T) = P, m———— (73)
J J (wTBJ)

Substituting Eq.(73) into Eq.(45) and normalizing by the

total power, produces

R,,.(1) j2nfoet sin(m1B,)
._l‘_ls_—_l__ = e ¢ J (74)
R,,.(1) (m18 ;)

kk =0 J

Inspection of Equations (72) and (74) reveal that the complex
correlation functions have equal phase information, since the
exponential terms are identical. The envelopes of these
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complex functions both approach unity for small arguments of
the sine function. The worst case analysis is for maximum
time delay differential (T max). This occurs when the
jammer is located at 6=90° (endfire) and the correlation
function is evaluated fo£ signals at ports located at oppo-
site extremes of the array. In Figure 2 this would be port
1,1 and port N,T. Table I shows the percent error between
the approximate correlation function (Eq.(72)) and the actual
correlation function (Eq.(74)). The calculations are for two
jammer bandwidths and two array geometries using tmax. The
errors are very small (less than 2%). The conclusion is that
Eq.(72) is a good approximation for the correlation function
of a broadband jammer.

Equation (64) is implemented in the comﬁuter simulation
used to produce the results discussed in subsequent chapters.
The covariance matrix depends on three jammer parameters,
which can be different for each jammer. These parameters are
total power (Tj;TT) , frequency offset (f ) , and spatial
location (em) .

The analysis of transfer functions for a l‘near, equally
spaced array begins in Chapter IV. No noise sources are
present; the quiescent weights are chosen for phase steering

of the array's main beam.
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Table I.

Broadband Jammer Correlation Function

Correlation|Approximate
Param- |Function Correlation gercinz
eters |p (1 - Function rror 2
J RJ(T) = 3 -4
. X100
Sin(#185) {1 sin(Mntsf) 3
(irBJf’ M sin(ntéf)
B =4%fo
N=4 wes 0.9895 0.9843 0.53%
o] |
™=t -t B =10C’f
1,1 "4,3'\Pg w1y
=2/f; ’ M=11 0.9355 0.9229 1.35%
N=2 BJ=4%fo :
T=3 M=5 0.9974 0.9956 0.18%
T=|t -t
| 1:1 2:3| BJ=10%f°
= 1/1, =11 0.9836 0.9804 0.33%
Column 1 2 3 4 S
of = l%fo
fo = 350MHz
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IV Antenna Arrays without Adaptive Weights

In this chapter the transfer function of an antenna array
with weighting coefficients chosen for phase steering is an-
alyzed. First, an expression for the transfer function is
developed, assuming phase steering at center frequency. Second,
several assumptions are made about the array's geometry which
allow the transfer function to be expressed in a closed form.
Third, for a given steering angle, the transfer function for
an array without tapped delay lines behind each element is com-

pared to the transfer function for an array with delay lines.

A. Linear Array

A common steering technique used extensively today is
based upon electrically steering the main beam of an antenna
array. Phase steering, as it is entitled, is done by delay-
iné the signal at each array port by a specific amount. This
changes the arrival angle at which all signals (at the array's
output) are in phase, from broadside to some steering angle es.

For phase steering, the weighting coefficients at each
port vary in phase only, not amplitude., In other words

Jjo Ja,

= i,g i,g
= G '8 = ’ 75
wq wi.s a i.se © (75)

for i=1,2,...,N , g=1,2,...,T
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The transfer function of Eq.(16) now becomes

N T
j2rn(f+1,)t Ji2n(f+Lf,)(t -t )+a
H(f,8) = e ¢ cz ze { ¢ i,g ¢ i,g] (76)

i=1 g=1

The Taylor series representation is then

N T
J2m(f+fo)t, z 2 e:] [ano(ti’g—tc)wzi'g] %

H(f,8) = e
i=1 g=1

Jiegant(e, ~t) + Gantcey -t )2 wofam
' 2

Steering the antenna array's main beam in direction es is
defined by the transfer function of Eq.(76) having a max-
imum amplitude when e=es . The transfer function has a
maximum amplitude when the exponential term within the sum-
mation of Eq.(76) has a value of one. The proper choice of

weights for steering in direction es is then

Jja

. t
e L8 = o )

~32ﬂfa(t -
1,85 ¢g (78)

where t is the propagation delay t for steering
1,8 i.g
angle 65 , and tc is the phase center delay tc for

8
steering angle es . Substituting the proper phase steer-

ing weights into Eq.(76) ylelds
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N T
J2M(£+E,)t

H(£,0) = e ’ °:£ 25

i=1 g=1

j[2ﬂf(ti’g-tc)+2nfo((ti—ti ) -

e s
(te-t, NI (79)
s
The Taylor series prepresentation is
N T J2nfo((t,-t, )-(t -t _ )
jen(£+£f,)t [ i~i c ¢ ]
H(£,8) = e ’ °z Ze s sl x
i=1 g=1
J2nf(t -t
$1+32"f(ti,g-tc) + 1,8 e)? ...s (80)
2

Equation (79) is the general expression for the transfer
function of a phase steered array, assuming steering at cen-

ter frequency.

B. Linear, Equally-Spaced Array

The transfer function of Eq.(79) can be simplified fur-
ther by assuming that the array of interest has equally
spaced elements and equally spaced taps on the delay lines.

Using Eq.(4) the propagation delay at port i,g is
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¢ - (1-1)d sin 8 _ (g-1)A (81)
i,g c c

= (i=1)T sin 6 + (g-1)8
fo fo ’

(82)

i=1,2,...,N g=1,2,...,T

The terms are defined as
d = TAy, = spacing between antenna elements in meters
I' = spacing between antenna elements in units of frac-
- tional wavelength at f,
N = number of antenna elements
A = 8l¢g = delay between taps in meters
6§ = delay between taps in units of fractional wave-
length at £,
T = number of delay line taps
Ao = wavelength at £
Note that with this notation, an array with no tapped delay
lines corresponds to the number of taps T equal to 1 .
The transfer function can be written in closed form us-

ing a geometric series identity. Equation (79) reduces to

N-1d T-1 A

J2n(£+£,)( = sind + =)

H(f,0) = e 2 ¢ Z ¢
d
c
d d A

sin (n(£+£°)3sine-wfoasines) sin(nfa)

sin N(n(£+1¢)dsin0-n1,Ssine ) sinT(n2d)

(83)
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Note that for this antenna geometry we have

to = N5 Sstnes 1 2 (84)

Looking at Eq.(83), the leading exponential term is just the
phase center term which is also the leading term in Eq.(79).

Several observations can be made about the phase response
of the transfer function identified by Eq.(83). First, the
choice of st ring angle es has no effect on the phase re-
sponse, Second, the response has a constant phase offset
associated with f, , plus a term dependent on frequency
deviation f . In the time domain, this response results in
a constant phase shift of the array output plus a simple time
delay of the output signal. The important point is that the
phase response does not have second (or higher) order fre-
quency dependent terms and therefore does not lead to dis-
tortion of the array output signal.

To separate the effects of tapped delay lines, the

transfer function of Eq.(83) is written

H(f,8) = H (f,8)H, (L) (85)

where
sz(r+f,)(§§l %sine)
He(£,0) 4 e X

sinN(w(f+fo)%sine-wfogsines)

d
ozsines)

i (86)
sin (ﬂ(f+f°)zsine-wf
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and sen(eete) (S5h %) A

(f) A e x sin T (nf c) (87)
" - sin (vf%)

The effects of the tapped delay lines are now entirely with-
in HD(f,) . Note that when there are no taps (i.e. T=1)
HD(f,) reduces to unity and the transfer function of a lin-
ear, equally spaced array without tapped delay lines is de-
fined by HE(f,e) . To investigate the frequency response
of H(£f,0) , the response without taps (i.e. HE(f,e)) is
first reviewed then the impact due to HD(f) is anticipated

and finally the total frequency response is analyzed.

C. Transfer Function

H;(£,0) 1in Eq.(86) defines the transfer function of in-°
terest. The results for the rest of this paper assume broad-
side steering (i.e. es=o ) ."With this assumption, the
transfer function becomes

jan(£+£0) (552 dsine)
HE(f,e) = e : X

(88)
sin N(n(f+fo)%sine)

sin(w(f+fo)%sine)

The function has been analyzed by Raska (Ref 11). His re-
sults are based on the closed form solution of the Taylor
series expansion terms. They were verified by implementing
the open form transfer function and coefficients of Eqs (16)
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through (21). For a linear equally spaced array without taps
these coefficients are

. d_. o (N-1) d_,
Jznfo[(1-1)cs1n8-——§—- csme]

N
z e (89)
i=1 .

A(8)

N
2 [(i-1)3sine- EoL) dying) x
i=1

B(6)

j2nge [(i-1)3sine- L) dosng) (90)
e

N
z [((i-1)3sine- BE1) oine)2/2] x
i=1

[}

C(96)

dsine] (91)

JZWfo[(i-l)%sine- Lgéll s

e

The results are summarized graphically in the following fig-
ures. The parameters used were for a four element array

(N=4) with half wavelength spacing between elements (d=41,).
The frequency response of the array is shown in Figure 6 for
several angles 6. All frequency responses in this paper are
normalized by dividing the transfer function by NxT. As we
approach array broadside the response becomes constant and
distortion at the output is minimized. Figure 7 shows the
phase response of HE(f,e) . Note that this response varies
linearly with frequency. The slope and intercept are a
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function of angle 6 . For a given arrival angle 6 , the
phase response will not contribute to any signal distortion.
Figures 8, 9, and 10 are of the Taylor series coefficients
A(6), B(9), and C(6) respectively. For this particular array,
A(6), B(8), and C(9) are defined in Equations (89), (90) and
(91). Several results are of particular interest. <{ae array
factor (A(8)) 1is purely real while B(8) 1is purely imagin-
ary. Since these terms are 90° out of phase with each other,
the derivative term in the distorted output is added in phase
quadrature to the undistorted correlation function (r(r))
From Figures 8 and 9 we note that the antenna radiation pat-
tern, A(®) , has an inverse relationship with the deriva-
tive radiation pattern, B(8) . In other words, the largest
lobes in A(8) correspond to the deepest nulls in B(6) and
vice versa. Using Figure 11 and the distortion threshold as-
sumed in Eq(36) of Log |A(8)/B(8)|26.7 , we see that the dis-
tortion term becomes significant at the nulls in the radiation
pattern A(6) . This distortion persists for :2? about
the nulls. The third coefficient in the Taylor series, C(8) ,
has its strongest peak at ©6=50° . This second derivative
distortion term is apparent in Figure 6. The array frequency
response has a noticeable curvature for the case of 6=50°
This curvature has a second order variation with frequency.
Any second derivative distortion would not be significant in
the array's output since the multiplying term C(6) is so

small, even at 6=50° |,
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The amplitude response of the array filter can be repre-
sented as a constant plus a term linear in frequency over a
bandwidth of approximately 15% of the center frequency
fo(f/£4=2.075 in Figure 6). Both terms depend upon arrival
angle ®© . Thus, the first term in the Taylor series is
sufficient to represent the array filter near broadside (see
6=5° in Figure 6) while the second term in the series is
strongly dominant in the vicinity of a null (see 6=30° in
Figure 6). In the next section we assess the impact of tap-

ped delay lines on these results.

D. Transfer Function with Tapped Delay-Lines

The phase response of H(f,0) has a greater phase off-
set and steeper slope due to the addition of delay-lines,
This is apparent from the leading term in Eq.(83). As before
this term is linear in frequency and therefore produces no
distortion in the signal of interest,

The impact of HD(f) on overall frequency response of

sinM(x)
sin(x)

of the response which appears both in HD(f) and HE(f,e)

the array is analyzed by investigating the form
(see Eq (87) and (88)). The modulus of HD(f) is centered
at f/£,=0 while the modulus of HE(f,e) is centered at
f/fo==1 ., The generic forms of these functions are shown in
Figure 12, Near the center frequency (i.e. £f/f¢=0) the mod-
ulus of HD(f) is relatively constant. For bandwidths of
+25% of fo,IHD(f)I_ drops only 5% below its peak value.

These numbers are valid for T=3' and A=%4)\, . As the ratio
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1/TA gets larger, the sidelobes in Figure 12b. move farther
from the origin and the frequency response of HD(f) gets
flatter. For the particular parameters used here, we would
not expect the array's frequency response to change signifi-
cantly due to the additioﬁ of tapped delay-lines. The follow-
ing figures support this conclusion.

As before the parameters used are for a four element
array (N=4) with half wavelength spacing between elements
(d=%Xxy) . 1In addition, each element has a three-tap delay-
line behind it (T=3) with quarter wavelength spacing between
taps (A=%X,) . The frequency response of the entire array
is shown in Figure 13 for the same five angles used in Figure
6. The effect of tapped delay lines is most apparent as 6
approaches broadside. At 6=0° , HE(f,e) feduces to unity
and an array without taps has a constant frequency response,
An array with taps will have a response determined by the
tapped delay-line parameters (i.e, determined by HD(f)).

For 0=5° in Figure 13 the curvature in the response due to
a second order frequency dependence of |HD(f)[ is readily
apparent.

The phase response of this array with delay-lines is
shown in Figure 14, As énticipated, it has a greater phase
offset and steeper slope due to the tapped delay-lines (com-
pare to Figure 7).

The similarity in frequency response of an array without

delay lines versus an array with delay lines is reflected by
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the Taylor series coefficients A(8), B(0), and C(8) which
quantify the arrays frequency dependence. Figures 15, 16,
and 17 are polar plots of these coefficients for an array
with tapped delay-lines. Comparison to Figures 8, 9, and
10 for the array without delay lines reveals little differ-
ence., Data for these six figures reveal no difference in
values for A(6) and B(6) between the two arrays. The
third term C(6) 1is larger for the array with delay lines,
as expected from the additional second order frequency depen-
dence supported by Figure 13. Even so, C(6) 1is on the order
of 107!%® for all angles. This is insignificant in relation
to signal distortion, based on the values of the second de-
rivatives of signals appearing in Craddock's work (Ref 3).

For both arrays, |A(8)| is much greater than |B(98)]
(on the order of 10°) everywhere except at the antenna pat-
tern nulls of 30° and 90°, This is consistent with the fre-
quency response figures which show "V-shaped" nulls at 6=30°
and 90° . The linearity in the array response, which is
essentially unaffected by the addition of tapped delay-lines,
leads to the conclusion identified by Raska, that the output
of the array consists of the input signal and its first de-
rivative (Ref 11:112-113), Figure 18 shows the '"array filter
bandwidth" versus angle as derived in Chapter I1. By compar-
ing this figure to Figure 11 we see that there is no differ-
ence. The location of significant first derivative distortion,
based on a threshold of 6.7 as before, persists for 2° about
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each antenna pattern null.

In conclusion, the addition of tapped delay-lines to
phase steered arrays does not change the frequency response
of the array for moderately wideband signals in the UHF range.
This bandwidth is on the.order of f/fy=t5% or 10% band-
width, Though the phase respone changes, it remains linear
with frequency. Therefore the distortion of the array out-
put is uneffected by the addition of tapped delay-lines for
an array with fixed weights which implement phase steering at
center frequency. It should be noted however  at real sys-
tems may still perform differently with tapped delay-lines
because actual phase shifters are dispersive in frequency.
The following Chapter looks at the frequency response of an
array whose weights are adapted to noise sourﬁes in the en-

vironment.
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V Antenna Arrays with Adaptive Weights

This chapter addresses the transfer function of an antenna
array with weighting coefficients. The weights are computed
from assumed jammer parameters (power, angle of arrival, and
bandwidth) using the weight equation discussed in Chapter III.
The weights are then used to compute array transfer functions.
In Chapter IV it was shown that for phase steered arrays, the
signal output consists of the original signal plus its first
time derivative (Ref 11:112-113). The purpose of this chapter
is to determine if adaptive arrays lead to outputs with sig-
nificant higher order time derivative signal distortion. To
limit the scope of this analysis, several constraints are ap-
plied. First, for all cases the arrays are steered broadside,.
Second, the input thermal noise power to the array element is

one watt.

A, Linear Array Adapted to Narrowband Jammers

In Chapter IV it was possible to derive a closed form sol-
ution for ‘the antenna array's transfer function. That is not
possible in this chapter because of the adaptive algorithm used
to determine the weighting 6oefficients. For each scenario, the
assumed jammer parameters and broadside steering constraint are
used to calculate the covariance matrix 3 (see Eqs(44) and (64)
and the quiescent weights Wq (see Egqs (75) and (78)). The

array weights are computed from Eq.(39) then used to compute the
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transfer function with Eq.(16).

In addition, the coefficients of the Taylor series ex-
pansion are calculated using Eqs.(17) through (21)., These
coefficients can be used to verify the transfer function and
identify the order of frequency dependence inherent in it.

The fdur separate scenarios to be evaluated are for a
single jammer of 10 watts at 10° and 50° and of 1000 watts
at 10° and 50° . These jammer locations are measured with
respect to array broadside. In each case the transfer function
is evaluated for an array without tapped delay lines (T=1)
and for an array with tapped delay lines (T=3) . The choice
of jammer locations is based on analyses of results from
Chapter IV, With the adaptive algorithm used here, a null
can be produced at the location of a sufficiently powerful
jammer. In this analyses a jammer of 1000 watts is adequate
to produce a null. Though the transfer function is dependent
upon angle, the angle of interest is the location of the jam-
mer. At this location the value of A(8) is reduced sufficient-
ly so that higher order terms in the Taylor series may become
significant.

The antenna pattern for A(8) is shown in Figure 8 for a
particular unadapted array geometry. In this figure there are
nulls at 6=30° and 90° , It is expected and was verified
that a jammer at either of these locations would not result
in adaptive weights which would produce a more optimum pat-

tern for nulling the jammer. Figure 9 shows the pattern
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associated with the next Taylor series coefficient, B(6).
The magnitude of B(6) 1is sufficient at almost all angles
to represent the linear variation with frequency of the as-
sociated transfer function (see Figure 6). It is anticipat-
ed that any jammer location would lead to a frequency re-
sponse which has at least a linear dependence on frequency,
as quantified by B(8) .

The distortion pattern associated with C(8) is shown
in Figure 10. The second order variation with frequency
which is associated with C(6) was not significant for phase
steered arrays, and bandwidths on the order of 15% of f,
However this was true due to the dominance of A(6) at most
angles. If a jammer is placed at 6=50° , where C(6) has
its peak value, A(6) may be reduced enough to lead to ob-
servable second order frequency variations in the transfer
function of that adapted array. This research verified this
conclusion.

Based on the above, the two jammer angles chosen to be
reviewed here were 0=10° and 6=50° . The first angle
leads to results which do not vary significantly from the un-

adapted case. The second angle leads to different results.

1. Phase Response

For all cases investigated during this research effort,
including those in this chapter, the phase response of the

array was linear with frequency. The numerical results for
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the cases of a jammer located at 6=10° will be used to
illustrate this conclusion; the phase response of other
cases will not be discussed. Phase response plots for most
cases can be found in Appgndix B.

Table II contains the modulus and phase values for the
Taylor series coefficients produced by jammers located at
8=10° . Three cases are addressed. First, the unadapted
array whose values are listed here for reference. Second,
the adapted array for a low power jammer of 10 watts. Last,
the case of a higher power jammer of 1000 watts., Note that
all coefficients are either purely real or purely imaginary.
The multiplying factor‘associated with each coefficient al-
ways results in a product which is purely real. These multi-
ply factors are those shown in Eq.(18), repeated here for
convenience

[j2n(f+fo)tc]

H(£,0) b e fA(8)+(J2TE)B(8)+(J2mE)2C(8)+...} (18)

The significance of this result is first that the complex num-
ber defined by the summation of terms in Eq.(18) is purely
real. Second, the output signal and its first derivative are
separated in phase by 90° due to the phase of A(8) and
B(®) shown., The phase response of the transfer function is
due to the sign of this summation and the leading exponential
term in Eq(18). Therefore the phase response is linear with

frequency,
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Table II. Taylor Series Coefficients for
Narrowband Jammer at 10°.

Jammer N,T Normalized Amplitude and Phase at 10°
Power (Watts) A(9) B(6) C(6)
8.233 x 10~! |1.525 x 10~!°(2.736 x 10721
0 4,1 .
0° 90° 0°
0 4,3 8.233 x 10-! [1.525 x 10~'°|1.674 x 10~
0° 90° o°
10 4,1 |2.008 x 10~% |1.525 x 10-!°|3.529 x 10-2}
o’ 90° 180°
10 4,3 16.804 x 10~? [1.525 x 10-1°(2.882 x 10-2?
0° 90° 180°
1000 4,1 |2.058 x 10~* {1.525 x 10-!°|8,586 x 10-?2
0° 920° 180°
1000 4,3 16.860 x 10~° [1.525 x 10~!°{4,287 x 10-2
0° 90° 180°

Thermal Noise Power = 1 Watt
Jammer Bandwidth = 0% f,

d = XAp/2

A = Xo/4

2. Frequency Response for a Jammer at 6=10°

The two jammer cases associated with Table II are dis-
cussed next for the T=1 geometry. Figures for the T=3
geometry can be found in Appendix C. Figure 19 is the fre-

quency response resulting from a jammer with 10 Watts power,
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The corresponding Taylor series coefficients are in line
three of Table II. The question to be addressed for this
case and subsequent cases is what order frequency dependence
does this response have? It is concluded from Figure 19

that the dependence is linear with frequency. Therefore only
the first two coefficients are required to adequately repre-
sent |H(f£,0)] . This is denoted by using a subscript 2

as shown

[H(£,0)]=|Hy(2,0)]2]A(8)+(j21£)B(8)| (92)

This approximation is verified by noting that the value for
A(8) 1listed in Table 11 corresponds well with the value of
|H(£,0)] at £/£f,=0 in Figure 19, Also, the slope of the
curve in Figure 19 is equal to 2uf,B(6) at 6=10° ., The
jammer power in this case is insufficient to produce a null
in the transfer function,

Figure 20 is the frequency response for an array adapted

to a jammer with 1000 Watts of power. The value of B(9),

both in the figure and Table II line four, is unchanged. How-

ever A(8) has a well defined null at 6=10° ., These re-
sponse curves are typical of results produced by a jammer
located at least 10° away from 6=50° ., For bandwidths on
the order of 15% of £, , the output of an array, either
with or without delay lines, consists of the input signal and
its first time derivative.
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3. Frequency Response for a Jammer at 8=50"

For this particular array geometry, a jammer located at
8=50° produces second time derivative distortion in the ar-
ray output. Other angles are not effected in this manner as
seen in Figure 21. This figure shows the frequency response
for several angles given an array adapted to a jammer at
9=50° with 1000 watts power. Except for 6=50° , all fre-
quency responses at other angles are linear in frequency for
the bandwidth of interest. The numerical values of the first
three Taylor series coefficients are in Table III for this
case and the case where jammer power is 10 watts. Also list-
ed for reference are the values for an unadapted array., Fig-
ure 22 is an expanded view for the case where the jammer power
is 1000 watts and the array does not have delay lines. Two
related observations are of interest. First, the null is
asymmetrical about £/f,=0 . Second, the curve is not lin-
ear with frequency. The second order variation with fre-
quency which leads to the asymmetrical response curve will be
investigated first.

Using the subscript notation described earlier, the fre-

quency response can be approximated by

|H(£,0)|=|Hs(£,8)] A]AC8)+(J2nE)B(8)+(J2rE)? C(8)| (93)

Substituting the coefficient values from line five of Table

I11I into this equation yields the data points which are
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Table III.

Taylor Series Coefficients for

Narrowband Jammer at 50°

Jammer N,T Normalized Amplitude and Phase at 50°
Power (Watts) A(9) B(6) C(8)
2,665 x 10-!'|1,152x10-!® |5,742x107}°
0 4,1
180° -90° ~-180°
0 4,3|2-665 x 10-1{1.152x10"!% |6.196x10-*°
180° -90° -180°
10 4,1/6.5-1 x 10~%|1,152x10-*°% |3,796x10"!°
180° -90° -180°
10 4,3(2.203 x 10-%{1,152x10"!% [3,768x10-!°
180° -90° -180°
1000 4,116,662 x 10~5{1,152x10~'? |3,748x10-?'°
180° -90° -180°
1000 4,3|2.221 x 10~°}1,152x10-'° |3,748x10~?!°
180° -90° -180°
Thermal Noise Power = 1 Watt

Jammer Bandwidth = 0% f,
d = )\0/2

A= Ao/4

contained in Table 1V, Table IV lists these values, in column

three, along with the actual value of the response, from Eq.(16).

The error calculations in column four quantify the fact that
this approximation is reasonable near For band-

|Hs(£,0)]

£/£,=0 .

widths of 12% of £, , is accurate to within 4%,
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Table IV. Frequency Response for
Narrowband Jammer at 50°

£/1, |H(;,9)| |H;(£,8)|| Percent error 2 lf_%_f % 100
-0.091 | 0.0070 | 0.0081" 15.1%
-0.061 | 0.0084 | 0.0088 4.19%
-0.040 | 0.0072 | 0.0073 0.8%
-0.020 | 0.0044 | 0.0044 0.5%

0.000 | 0.0001 | 0.0001 0.0%

0.020 | 0.0058 | 0.0057 0.9%

0.040 | 0.0130 | 0.0130 0.4%

0.061 | 0.0216 | 0.0221 2.7%

0.091 | 0.0366 | 0.0380 3.9%

1 2 3 4

Thermal Noise Power = 1 Watt
Jammer Bandwidth = 0% f,

Jammer Power = 1000 Watts

Therefore, the output of this adapted array will be the input
signal and its first time derivative as before. In addition,
the signal's second time derivative could contribute to the
distorted output.

The lack of symmetry of the null in Figure 22 is due to
the dependence of this response on an odd function of fre-

quency. The odd function is defined by j2nrfB(8) while the
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even function is (j2n£)2C(8) . The null at £/f,=0 is
defined by the value of A(6) . The other null is due to
the 180° phase difference between the above functions for
negative frequency offsets. As the jammer power is reduced,
the value of A(8) increases and the response curve is
shifted by an associated amount,

Figure 23 is the transfer function for an array adapted
to a jammer with 10 Watts, still located at 6=50° , Note
that it has the same first and second order dependence on fre-
quency. This figure is the same as Figure 22 with a constant
negative offset, defined by A(8) . This value is in line
three of Table III., It can be concluded, from the values in
Table II and Table III, that A(6) 1is a function of jammer
power for a given angle. Also, B(8) and C(6) are not a
function of jammer power. For unadapted arrays it was noted
that A(6) and B(9) have an inverse relationship 1i.e.
peaks in A(®) are nulls in B(8) and vice versa. This is
not necessarily true for adapted arrays. A null in A(9)
produced by a jammer does not lead to a peak in B(8) at
that same location. Figures 24, 25, and 26 are polar plots
of A(9), B(9), and C(6) for an array adapted to a jammer of
1000 Watts at 6=50° ., By comparing these figures to equiva-
lent figures for the unadapted array (Figures 8 and 9) this
observation can be verified.

Phase response curves for adapted arrays with delay lines

(T=3) are in Appendix B. Appendix C contains frequency
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response curves»and polar plots of coefficients. The addi-
tion of delay lines has no impact on these results,

In summary, narrowband jammers do not lead to adapted
arrays with output distortion significantly different than
that for unadapted arrays. For jammers located at 50°:10°,
second order derivative distortion is possible if such sig-
nals had a magnitude sufficient to offset the value of C(9) .
However, existing work does not contain derivative signals
with the necessary magnitudes (Ref 3). Therefore, even for

a jammer at 50° , the results do not vary substantially

from the unadapted array case.

4. Frequency Response for Multiple Jammers

The frequency responses for several multiplé Jjammer

cases are reviewed in this section. The first case is de-
fined by two jammers located one degree apart, each trans-
mitting 1000 Watts of power. Figure 27 contains the fre-
quency response curves, for the associated adapted array, at
location 6=10° and 6=11° i.e. in the direction of the jam-
mers. Though the array geometry would support a null on each
Jammer, only one degree qf freedom was used. The weights cal-
culated by the algorithm result in a null located between the
Jammers at 6=10.5° . The values of A(6) at 10° and 11°
are non-zero and nearly equal, due to the symmetry of jammer
powers. The transfer functions in Figure 27 are approximated

by the first two térnn in the Taylor series expansion. The
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single nulls shown on each side of the carrier frequency occur
due to the 180° phase shift in A(8) at 10.5 . The null
frequencies are defined by the points at which the magnitude
of the first and second Taylor series terms are equal.

That is

A(O f
7T oB(0 I il 7y (94)
8=10°,11°

Evaluating this equation for the coefficient values at 6=10°

and 11° produces null frequency ratios of ,0492 and -.0452

‘respectively. Figure 27 verifies this calculation.

The second case iﬁvestigated is defined by two jammers
of equal power located 50 degrees apart. Figure 28 contains
the frequency response curves for 6=10° and 60° which is
where the jammers are located. The adapted weights result in
a spatial null being produced in the direction of each jammer.
Ih general, an N element array has N-1 degrees of freedom
and can produce N-1 nulls over its field of view (Ref 12:5),.
The four element array used in this research will support
three nulls in the antenna pattern.

Figure 29 contains the response curves for the third
multiple jammer scenario. Three equal power jammers are
plucéd at 6=10° , 35° , and 60° . Note that a null has
been placed on each jammer, The résponse curve in direction
0=60° reveals a second order frequency dependence, as dis-

cussed for the scenarios involving Jammeis at 6=50° ., This
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illustrates the spatial breadth of this distortion. Though
not quantified, this persists for 0=50°:10° for bandwidths
on the order of 30% of f, .

If a fourth jammer is added to this scenario, the adap-
tive algorithm would be overconstrained. There would be more
interference sources present than spatial degrees of freedom,

Figure 30 shows the response curves for an overconstrain-
ed array. A fourth jammer has been added at 6=85° ., The
adapted weights result in no nulls being placed in the direc-
tion of the jammers, though the unadapted array pattern null
at 6=90" tends to null the jammer located at 6=85° ., This
figure is for an array geometry including tapped delay lines.
As shown in Chapter IV, the transfer function associated with
delay lines is independent of spatial parameters. Therefore
it is expected that they would not increase the spatial de-
grees of freedom associated with an array adapted to zero
bandwidth jammers. Figure 30 verifies this since one addition-
al degree of freedom would have resulted in a nulllbeing plac-
ed on each of the four jammers, Therefore delay lines can not
be substituted for antenna elements to rclieve the problem of
an overconstrained array.(Ref 12:14).

In summary, adding multiple narrowband jammers to the noise

environment does not effect the distortion reéults.

B. Linear Array Adap;éd to Broadband Jammer N

The transfer function of an array adapted to a broadband

Jammer is investigated in this section. The single broadband
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Jammers is represented as a sum of narrowband jammers each
at a different frequency, but all at the same spatial loca-
tion. Four scenarios are used to investigate the impact of
delay lines and jammer bandwidth on the array's frequency
response, The associated phase responses can be found in
Appendix B. All scenarios use a jammer with a bandwidth
which is 4% £, . The total transmitted power is 1000 Watts,
This power is divided evenly between five uncorrelated, dis-
crete spectral lines. These lines are spaced at constant
frequency increments centered about f, . The factors
which differentiate each case are jammer location and the
presence, or absence, of tapped delay lines,

1. Frequency Response for a Jammer at 8=10° . Figure

31 is the frequency response for the adapted array without
tapped delay lines. To evaluate the depth of the null, we
define {f/f,=t.,02 as the endpoints of the bandwidth of in-
terest, since the jammer has this same bandwidth. At these
points, the array without delay lines has a response which
is down 23.0db relative to a normalized peak amplitude of 0db.
Figure 32 contains the response associated with an adapted
array with delay lines. The null depth for the bandwidth of
interest is 29.2db. The addition of delay lines leads to an
increase of 6.2db in null depth. The result drawn from this
comparison is that the addition of delay lines to an array im-
proves the null bandwidth in the direction of a broadband jam-

mer.
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Table V lists the Taylor series coefficients associated
with Figures 31 and 32. The slope of the response curves is
determined by 2nB(8) . Looking at Table V, the values for
B(®) do decrease, consistent with Figures 31 and 32, The
adapted array with delay lines has the smallest value for
B(6). This is consistent with the broader nuller seen in the
response curve for that array. For this broadband case, the
first two Taylor series expansion terms are necessary to ap-
proximate |[H(f£,0)| . This was verified using the values in
Table V. |

2. 'Frequency Response for a Jammer at 6=50°. Figures

33 and 34 show the frequency responses of an array without

and with tapped delay lines for a broadband jammer located at
=50 ® ., TFor endpoints still defined by the bandwidth of the
Jjammer, the improvement in null depth is 2.5db. This can be
verified by comparing Figures 35 and 36 which are an expanded
view of the response curves for the same cases as above. The
figures also show the improvement in frequency response symme-
try about £, as delay lines are added. This change is re-
flected in the Taylor series coefficient associated with first
order frequency coefficignt, B(8) . Table VI contains the
coefficient values for these two cases. These scenarios sup-
port the observation that the first three terms in the Taylor
series are necessary to approximate H(f,0) . It can be ex-
pected from looking at Figure 34 and Table VI that as an ar-

rays frequency response becomes more symmetrical about £,
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Table V. Taylor Series Coefficients for
Broadband Jammer at 10°
N,T | Normalized Amplitudes and Phase at 10°
A(8) B(6) c(e)
4.1 2.016 x 10" 1.175 x 10-!° 4,293 x 10”2!
’
0° 90° 180°
6.450 x 10~° 2.614 x 10-'! | 4.253 x 10~%!
4,3
o° 90° 180°

Jammer Bandwidth = 4% £,

.Thermal Noise Power = 1 Watt

Jammer Power = 1000 Watts

d = 1o/2
A= 10/4
Table VI. Taylor Series Coefficients for
Broadband Jammer at 50°
N,T Normalized Amplitude and Phase at 50°
A(9) B(8) c(e)
4,1 4,288 x 10™" 1,712 x 10~1? 3.748 x 10-!°?
180° -90° 180°
4.3 |3-822x 10-* 5.328 x 10-!2 3,727 x 10-!?
?
180° -90° ‘ -180°

Thermal Noise Power = 1 Watt

Jammer Bandwidth = 4% f,

Jammer Power = 1000 Watts

d= 2e/2

A =)o/4
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and its second order frequency dependence dominates the
response, the output of the array may contain no distorted
signal. This is true for those desired signals whose second
time derivative is insignificant, since it is that deriva-
tive term which is scaled by C(8) . The shift towards sym-

metry for these cases indicates the decreasing magnitude of

"B(6) .

It is of interest to know whether the bandwidth of the
null could be due to the transfer function of a delay line
behind an antenna élement. To investigate this, the transfer
functioﬁ of the delay line behind the first element of the
array was analyzed. The particular array used was the one
assocliated with Figure 36. The weights for the three ports
of element one are listed in Table VII. The associated trans-
fer function is calculated for several frequency values in
Table VIII. The transfer function for the delay line is de-
fined by Eq.(16) using N=1 ., It can be concluded from the
frequency response data points in the second column of Table
VIII that the null breadth is not due to the delay line alone.
This is expected since this reséonse is independent of spatial
location of the signal of interest.

In the course of this research, results were compared to
other reference works to verify the validity of the computer
program used to produce frequency response curves. Results
from adapted array geometries without delay lines were checked

versus Gabriel and verified as correct (Ref 6). Results from
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Table VII. Weights for Broadband Jammer at 50°

Weight Modulus Phase (Degrees)
wl’1 .69456 90.27

1,2 71794 -2.64

w1,3 .74195 -95.42

SR

Thermal Noise Power = 1 Watt
Jammer Bandwidth = 4% f,
Jammer Power = 1000 Watts
N=4 T=3 d=)o/2 A=),/4

Table VII1. Transfer Function of Delay Line for
Broadband Jammer at 50°

£/£, Normalized Modulus Phase (Degrees)
-.05 0.179 -68.3
-.04 0.178 -68.9
-.03 0.179 -69.6
-.02 0.179 -70.3
-.01 0.179 -70.9
0.00 0.179 -71.6
0.01 0.179 : -72.3
0.02 0.180 -72.9
0.03 0.180 -73.6
0.04 0.180 -74,3
0.05 0.179 -75.0

Thermal Noise Power = 1 Watt
Jammer Bandwidth = 4% £,

Jammer Power = 1000 Watts
N=1 T=3 d=\Ao/2 A=) /4
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{ adapted array geometries with delay lines, i.e. with fre-
quency dependent weights, were checked versus Compton and
discrepancies found (Ref 2). The null depths resulting from
his research could not be _ duplicated. To illustrate the
differences, Figure 37 should be compared to Compton's
Figure 22 (Ref 2:34). Both scenarios involve a two element
linear array with three tap delay-lines. The adapted weights
are in response to a jammer at 6=50° with 4% f, band-
width. Compton's response curve has endpoints, at £/f,=+,02,
which are down 43db versus Figure 37 which is down 22db. His
null at .f/fo=0 is down 73db versus Figure 37 which is down
42 db. Two areas were investigated to explain these dis-
crepancies. First, the adapted weights associated with jam-
mers having non-zero bandwidth were compared to weights re-
sulting from jammers into zero bandwidth. Second, the co-
variance matrices were compared.

' Table IX contains the weights associated with an array
adapted to a zero bandwidth jammer. Only the weights of ele-
ment one are listed here . It should be noted that the weights
have phases which are 90° apart., This is consistent with the
delay line spacing of 1,/4 . Comparing this to Table VII, it
is apparent that the weights associated with a 4% f, bandwidth
jammer are dependent on the jammer bandwidth. They are not 90°
apart as above, The conclusion is that the adaptive algorithm

implemented for this.research does produce weights which are

(“; dependent on jammer bandwidth, Since numerical date, such as
. 109
|
- ' e | = i o o e TN T T e SRR Y " - WF‘ =
§ — —




asuodsay Aouanbeayg

*LE 2an3dyg

.01 % 0344 ¥3I1y¥¥4HI/ 4
4 3 o) ¥Z°0 gr1°o g80°0 000 80°0- a1°0- ¥2°0-
L L Y ) 1 re . ...l
<Q
o
(=]
(=]
]
-~
oD
oX
8>
—
[ ]
, =
.lsn
=]=
oM
[ ]
—
=z
]
o
"S®
Q
o
008 L
o
W17 Js 11 030 08 4 =4
0001=2( ¥OUYr €=1 3=N
39N0JSIV AININD3IVI
AVNNS N1 032848 1003 B
o
=4

110




Table IX. Weights for Narrowband Jammer at 50°
Weight Modulus Phase (Degrees)
wl,l 772 81.03
w1,2 772 -8.97
W1’3 LT72 -98,97

Thermal Noise Power = 1 Watt

Jammer Bandwidth

= 0% f,

Jammer Power = 1000 Watts

N=4 T=3 d=1,/2 A=),/4

values of the weights, are not presented in Compton's work,

the weights associated with Figure 37 can not be quantitatively
compared to see if a difference exists., However, it can be
assumed from the response curves that this is true. The im-
portant point is that the computer program used here produces
correct results based on the covariance matrix used here. The
discrepancy in results can be attributed to that matrix.

The program used here calculates a covariance matrix de-
fined by Eqs.(44) and (47). From these equations it should
be noted that the information used in this matrix comes only
from the interference and thermal noise sources. Compton
makes use of the desired signal's correlation function in
addition to the above. The point to be made is that the a
priori knowledge of the desired signal is exploited more
fully in Compton’sAresearch than in the research presented

here, The only a priori knowledge of the desired signal
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assumed here is its location, which is used to determine the
quiescent weights in Eq.(78). It is this difference which is
assumed to produce different adapted weights and therefore
different frequency response curves,

In this chapter several array transfer functions were
analyzed. The array weighting coefficients were determined
by an algorithm using given noise information., The conclusion
to be drawn is that, for some locations within an adapted
array's field of view, the associated transfer function re-
quires the first three Taylor series terms to be adequately
represented. Also, the presence of tapped delay-lines does
not significantly improve the array's performance for scen-
arios involving zero bandwidth jammers. They do improve
performance when non-zero bandwidth jammers are involved.

For the particular cases investigated here, the improvement
was 6.2db and 2.5db for a jammer located at 10° and 50°

respectively.
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VI Conclusions and Recommendations

This thesis has investigated the effects of adaptive
antenna arrays with tapped delay-lines on wideband signals.
The array was analyzed as a filter and its transfer function
derived. The properties of the output waveform were determin-
ed by expanding the transfer function in a Taylor series. The
conclusions drawn from Chapter II folliow.

(1) The output of an array contains an infinite sum of
components consisting of the input signal and all the nth
order time derivatives of the signal.

(2) Each component is weighted by a éomplex number
{(Taylor series coefficient) that adjusts its phase and ampli-
tude before the components are added together.

In Chapter III we looked at the optimum weights to pro-
duce maximum signal power and minimum noise power at the ar-
ray output. The emphasis was on the adaption algorithm and
the noise covariance matrix in particular, The conclusion
follows,

(3) For purposes of adapting the array weights, a
broadband noise source can be modelled very well by a group
of narrowband noise sources of appropriate power and frequency.

In Chapter IV we investigated the transfer functions for
arrays using phase steering of the main beam. The beam was
steered broadside and the frequency and phase response anal-

yzed for various signal arrival angles.
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(4) The signal term dominates the output except in the
vicinity of nulls, where the first Taylor series coefficient
vanishes. Then the first derivative term becomes the main
output of the array.

(5) The addition of tapped delay-lines to phase steer-
ed arrays does not change their frequency response for mod-
erately wideband signals (f/f,=10%) .

In Chapter V we analyzed the transfer functions of arrays
adapted to reduce interference from narrowband then broadband
Jjammers. The conclusions follow.

(6) For both phase steered and adapted linear arrays the
signal and its derivative are separated in phase by 90°,

(7) One jammer location resulted in the frequency re-
sponse having a strong second order variation with frequency.
Therefore, three, rather than two, Taylor series terms were re-
quired to represent this response accurately. However, for
the modulation techniques reviewed in Craddock's work, none
had a second derivative term of sufficient magnitude to be
present at the output (Ref 3), Therefore, for all cases in-
vestigated the array output consists of the signal and its
first time derivative only.

(8) Increasing jammer bandwidth reduced the Taylor
series coefficient associated with a first derivative sig-
nal at the array output (assuming an array with tapped delay-
lines). This results. in broader nulls and less first deriva-
tive signal distortion.
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(9) The addition of tapped delay-lines improves array
performance when the noise environment contains broadband
jammers. For the particular array geometry and noise en-
vironment investigated, the improvement in null depth, for
the 4% f, bandwidth of the jammer, was 6.2db with a noise
source at 10° and 2.5db with a noise source at 50°.

(10) The addition of tapped-delay lines does not in-
crease the spatial degrees of freedom which an array has.

(11) The inverse relationship between the first and
second Taylor series coefficients (A(9) and B(9)) does not
hold true in general. A null produced in the direction of
a jammer does not lead to a corresponding peak in B(98).

The analysis performed in this thesis indicates areas
whether farther research is warranted. The following are
recommended.

(1) The results of this research are based on broad-
side steering of the array's main beam. In Chapter IV, the
transfer function of an array is shown to be dependent upon
steering angle (see Eq.(86)). Research should be done to
verify whether these results are valid for any choice of
steering angle. '

(2) The signal distortion derived here is based on a
steady state analysis. Research should be done to analyze
the transient response of the array. Particular emphasis
should be placed on how various transient conditions alter

the desired signal'at the array's output.
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{ (3) The results presented here could be analyzed from
an adversary role. It is apparent that jamming signals with
high power in the derivative term would be difficult to null.
Research could be done to identify signals whose correlation
function has a first derivative signal with particularly high
power.

(4) A quantitative analysis should be done to investi-
gate further the discrepancy identified between results pre-

sented here and Compton's work.

116




e v s 2

10.

11.

12,

Bibliography

Compton, Jr., R.T. "An Adaptive Array in a Spread-Spec-
trum Communication System,'" Proceedings of the IEEE,Vol,.
66,No.3:289-298 (March 1978).

Compton, Jr., R.T., and W.E. Rodgers. Adaptive Array
Bandwidth with Tapped Delay-Line Processing. Report
3832-3, The Ohio State University Electroscience Labor-
atory, Department of Electrical Engineering; prepared
under Contract N00019-74-C-0141 for Naval Air Systems
Command, May 1975. (AD 015 098).

Craddock, Joseph L. "Analysis of Modern Digital Modula-
tion Techniques." MS Thesis, Wright-Patterson AFB, Ohio:
Air Force Institute of Technology, December 1978. (AD
A064363).

Davenport, Jr., W.B. and W.L. Root. An Introduction to
the Theory of Random Signals and Noise. New York:
McGraw-Hill Book Company, 1908.

Dixon, R.C. Spread Spectrum Systems. New York: John
Wiley and Soms, Inc., 1976.

Gabriel, William F. '"Adaptive Arrays-An Introduction,"
Proceedings of the IEEE, Vol.64,No.2:239-272(February 1976).

Gagliardi, Robert M., and Karp, Sherman. Optical Communi-
cations. New York: John Wiley and Soms, Inc., 1976,

Hendrickson, Richard L. '"Adaptive Array Antenna Technol-
ogy," Technical Report MTR-5270. McLean, Va.: The MITRE
Corporation, August 1976 (ADB017908)

Jordan, Edward C., and Balmain, Keith G. Electromagnetic

Waves and Radiating Systems. New Jersey: Prentice-Hall,
ne., .

Papoulis, A. Probabilit Random Variables, and Stochas-
tic Processes. New York: JMcGraw-Hill Book éompany, 1965,
Raska, Jr., Edward "Effects of Antenna Arrays on Broad-
band Signals". MS Thesis. Wright-Patterson AFB, Ohio:

Air Force Institute of Technology, September 1978. (AD
A064679),

Ricardi, L.J. "A Summary of Methods for Producing Nulls
in an Antenna Radiation Pattern," Technical Note 1976-38.
Lexington, Mass. Lincoln Laboratory, 2 Sept76(ADAO32340).

117




.
M.mwg—h Ry

=

13.

14.

15,

16.

17.

Schwartz, M., et al., Communication Systems and Techni-
ques. New York: WcGraw-Hill, Inc, Iyéé,

Steinberg, Bernard D. Principles of Aperture and Array
System Design: Including Random and Adaptive Arrays.
New York: John Wiley an% Sons, Inc., 1976,

Thourel, L. The Antenna. New York: John Wiley and Sons,
Inc., 1960,

Van Trees, Harry L. Detection, Estimation, and Modula-
tion Theory, Part I. New York: John Wiley and Sons,
Inc., 1968,

Widrow, B., et al. '"Adaptive Antenna Systems," Proceed-
ings of the IEEE, Vol.55,No0.12:2143-2159 (December 1967)

118




Appendix A: Perturbation Analysis

It is generally accepted that there exists a duality be-
tween the frequency domain and spatial domain in the vicinity
of an antenna pattern null. In the course of the research for
this paper, this relationship often appeared when graphically
looking at frequency response |H(f,08)| versus frequency
deviation f and antenna pattern |A(8)| versus angle 6 .
To analytically investigate this duality relationship, two
perturbation analyses were done. The first was done in the
spatial domain by varying angular deviation 236 about null
angle aﬁ given that f£=0 . The second was done in the fre-
quency domain by perturbing frequency deviation {f about cen-
ter frequency f, given that 36=0

This analysis is done for an equally spaced linear array
without tapped delay lines. From Eq.(88) the amplitude re-

sponse of the transfer function for this case is given by

sin N[w(f°+f)%sine]

(A-1)

|Hg(£,0) =

sin [n(f°+f)%;1ne]

Written more explicitly, in light of the variables to be per-

turbed, this can be written as

sin N[n(f,+1)3sin(0,+20)]
(A-2)

(£o+2,0,+30)| =
[Bg(f 21,0020 sin [(fo+£)Ssin(8 4+30)]

Null angle BN is defined at center frequency. Using Eq.(A-2),
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the null angles are given by

oy = sin-‘(mﬁﬁ) , i=1,2,...,N-1 (A-3)
The analysis which follows is done assuming 0y 1is defined
as the first null angle (i.e. i=1)., This choice does not
effect the qualitative results,
First, performing the analysis in the spatial domain
given £=0 and using small angle trigonometric approximations
we have

d
sinN[wf,zain(eN+ae)]

|Bg(te,0+30)| =

lin[wf.%;in(en+ae)]

-1nN[nf.%(-1nencosae+cosensinae)]

lin[wf.%?lineucosae+coseNsinae)]

-1nl[wf.%(line +38cos8y)]

N
+30c0l6N)]

sin[re,S(aino (A-4)

Equation (A-4) is accurate to within 1% for 36 on the order
of :6° ., Substituting the expression for 6N given by Eq.
(A-3) for the first null angle into Eq.(A-4) yields

sinv(cd6+1)

|Bg(2,,0,+20)| = (A-8)

sin i(cae+1)

where
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Note the € 1is a constant whose value is determined by the
antenna array geometry. Equation (A-5) is the general form
of the solution in the spatial domain.

Performing the analysis in the frequency domain given

90=0 and the same value for GN leads to

sinN[ﬂ(f+fo)%sineN]

|HE(f+f°ren)l =

sin[w(f+fo)%sin9N]

1
sinN[n(ﬁfo )%sin(sin"NfoE):I

sin n(f+fo)%sin(sin“ 1,
NE oS

simr(-jff—d-l)

sinﬁ(iﬁ'rl) (A-7)

Equation (A-7) is the general form of the solution in the fre-
quency domain,

Conclusions can be drawn by comparing Eqs (A-5) and (A-7).
The antenna pattern defined in Eq.(A-5) and the frequency re-
sponse defined in Eq.(A-~-7) have the same generic form. Plot-
ting these functions versus independent variables 36 and
£/fo respectively will yield identical curves if f/f, is
scaled by the constant ¢ given in Eq.(A-6). These results are
valid in the vicinity of an antenna pattern null (36=:8°) for

any given linear, equally spaced array.
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Appendix B: Phase Response Figures

This appendix contains the phase response plots associat-
ed with the frequency response figures in Chapter 1V, V and
Appendix C. As noted in the body of this report, all re-
sponse curves here show a linear variation with frequency.

The abrupt change of phase in these figures is associated
with the change in sign of the modulus of the transfer func-

tions.
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( Appendix C: Frequency Response Figures

This appendix contains frequency response plots which
support the conclusions in the body of this paper. Also

included are polar plots of some Taylor series coefficients.
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